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Current State of Practice:
Periodic Wired Geophysical Monitoring



Wired Geophysical Monitoring



Long Lake Dam, Golden, CO

earth systems/
structures enabled 

to sense their 
environment and 

adapt to meet their 
objective

Goal: ‘continuous’ monitoring
using a (geophysical) WSN
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CS/EE Technical Challenges
• unable to integrate geophysical measurement 

techniques into off-the-shelf mote platforms

• collection of data in a resource constrained 
environment = use compressive sampling?

• geophysical measurement techniques require 
localization accuracy at the cm level

• geophysical measurement techniques require 
time synchronization at the micro-second level

• processing of data (ML and HPC)
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signal filters
110dB amplifier

24 bit ADC

Current State of Practice:
Periodic Wired Geophysical Monitoring
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Popular Mote Platforms

have limitations 
(ADCs, RAM, etc.)



gsMote: 
geophysical sensing Mote

• geophysical sensors: self potential, seismic, 
infrasound, resistivity 

• High/Low pass hardware filters
• Amplifier 
• AVR XMEGA256A microprocessor
• 24-bit off chip ADC
• 64kB FeRAM
• 2-32GB persistent flash storage
• 802.15.4 Radio (900 mHz with 2km range)
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Basic Mote Properties

• Sense

• Compute 

• Store 

• Communicate

LIMITED RESOURCES/ENERGY!
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Road Map: Data Collection

• Compressive Sampling Introduction 

• Implementing On-Mote Compressive Sampling

• Performance Evaluation  
Experiment 1: Sinusoids 
Experiment 2: Real Seismic Data
Experiment 3: Power Consumption



Compressive Sampling
• SmartGeo motes have very limited resources

• SmartGeo apps. have moderately high sampling rates 
==> need to REDUCE amount of data 

Why go to so much effort to acquire all the data 
when most of what we get will be thrown away?

David Donoho
IEEE Transactions on Information Theory

2006



Compressive Sampling
• SmartGeo motes have very limited resources

• SmartGeo apps. have moderately high sampling rates 
==> need to REDUCE amount of data 

replace “sample THEN compress”
with “compress WHILE sampling”

http://dsp.rice.edu/cs



Compressive Sampling
• works if original signal has low information (e.g., sparse) 

• transform original signal (x of length N) 
to vector (y of length M, where M << N)

measurement matrix (MxN)



• Random Gaussian

• Bernoulli

• Random Fourier

• Random Binary 

Measurement Matrics



• solve the underdetermined linear system

• by employing numerical optimization methods
to approximate the original signal

Signal Recovery



Signal Recovery

• solve the underdetermined linear system

• l1-norm minimization

• re-weighted l1-norm minimization

• l0-norm minimization

• l2-norm minimization



Compressive Sampling

measurement matrix (MxN)

• works if original signal has low information (e.g., sparse) 

• transform original signal (x of length N) 
to vector (y of length M, where M << N)



• Random Gaussian

• ‘static’ Random Gaussian 

• Random Binary 

Matrices Evaluated

(MxN)
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Compressive Sampling
• SmartGeo apps. have moderately high sampling rates

• SmartGeo motes have very limited resources 
==> need to REDUCE amount of data 

will compressive sampling help?? 

Question 1: how to implement compressive 
sampling on a wireless mote? 
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• Additive Random Sampling (ARS)
costly floating point operations

• Sparse Binary Sampling (SBS) 

• Randomized Timing Vector (RTV) 

On-Mote Compressive Sampling



Compressive Sampling
• SmartGeo apps. have moderately high sampling rates

• SmartGeo motes have very limited resources 
==> need to REDUCE amount of data 

will compressive sampling help?? 

Question 2: how do these  
algorithms compare?
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Experiment: sinusoids
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Experiment: sinusoids

9 different sampling rates (10% to 90%)
10 different seeds

95% confidence intervals
first 500 samples only
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Experiment: real-world data

9 different sampling rates (10% to 90%)
10 different seeds

95% confidence intervals



Experiment: real-world data
(500Hz data)



Experiment: seismic data
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Road Map: Data Collection

• Compressive Sampling Introduction 

• Implementing On-Mote Compressive Sampling

• Performance Evaluation  
Experiment 1: Sinusoids 
Experiment 2: Real Seismic Data
Experiment 3:  Power Consumption



Compressive Sampling
• SmartGeo apps. have moderately high sampling rates

• SmartGeo motes have very limited resources 
==> need to REDUCE amount of data 

will compressive sampling help?? 

Question 3: does  
compressive sampling work?



• SmartGeo Applications, Goals, and Challenges

• Resource Constrained Hardware

• Data Collection in SmartGeo Environments

• Classification of Data 
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Experiment: Classification

• Features 

- centroid, flux, kurtosis, rolloff

- 10 statistics (mean, median, standard deviation, 
variance, skewness, range, geometric mean, 
flatness, sum, and maximum)

• Training data

- 495 5-second avalanche frames 

- 495 (random) 5-second non-avalanche frames
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Compressive sampling is FEASIBLE 

for collection of seismic data 

ON a wireless sensor mote

Main Take Aways

Still lots of challenges to implement 

a wireless geophysical sensor network



Intelligent Geosystems 

natural or engineered 
earth systems enabled to 
sense their condition and 

adapt to meet their objective 



Recently graduated Ph.D. students: Doug 
Hakkarinen, James Maher, Aarti Munjal, 
Marc Rubin, and Kerri Stone 

Current Ph.D. Students:  Wendy Belcher, 
Henri van den Bulk, and Blair Watkinson   

M.S. Thesis Students:
Santiago Gonzalez, Blake Jackson,  Travis 
Johnson, and ...  

My Students Rule



In closing ... 

"I do not think that 
the wireless waves I 
have discovered will 
have any practical 
application."

Heinrich Hertz, 1890


